Filters for SSB Direct Conversion Transceivers

OVERVIEW

- SSB (Image Reject) direct conversion phasing method
- Allpass approach to constant phase difference
 - Active filters for audio-baseband quadrature
 - Passive filters for RF quadrature
- Active filter sensitivity is important consideration
 - $\circ~$ Audio phase difference networks
 - Audio band limiting LPF (or BPF)

TX / RX SSB DIRECT CONVERSION

DUAL ALLPASS 90° PHASE SPLITTER

DUAL ALLPASS 90° PHASE COMBINER

ALLPASS FILTER RESPONSE

DUAL ALLPASS PHASE RESPONSE

BIQUAD TRANSFER FUNCTION

$$T(S) = \frac{S^2 + \frac{\omega_Z}{Q_Z}S + \omega_Z^2}{S^2 + \frac{\omega_P}{Q_P}S + \omega_P^2}$$

 ω_Z and ω_P are zero and pole frequencies Q_Z and Q_P are zero and pole Qs

SECOND ORDER FILTER FUNCTIONS (BIQUADS)

FILTER RESPONSE TYPE	TRANSFER FUNCTION
LOW PASS	$K \frac{1}{S^2 + \frac{\omega_o}{Q}S + {\omega_o}^2}$
HIGH PASS	$K \frac{S^2}{S^2 + \frac{\omega_o}{Q}S + {\omega_o}^2}$
BAND PASS	$K \frac{S}{S^2 + \frac{\omega_o}{Q} S + {\omega_o}^2}$
BAND REJECT	$K \frac{S^2 + \omega_o^2}{S^2 + \frac{\omega_o}{Q}S + \omega_o^2}$
ALLPASS (DELAY EQUALIZER)	$K \frac{S^2 - \frac{\omega_o}{Q}S + {\omega_o}^2}{S^2 + \frac{\omega_o}{Q}S + {\omega_o}^2}$

ACTIVE FILTER BIQUAD REALIZATIONS

NEGATIVE FEEDBACK TOPOLOGY

STEFFEN ALLPASS FILTER

STEFFEN ALLPASS TRANSFER FUNCTION

$$\frac{V_{out}}{V_{in}} = \frac{-\omega^2 - j\omega\left[\frac{R_4}{R_5}\left(\frac{1}{R_2} + \frac{1}{R_3}\right)\frac{1}{C_1} - \frac{1}{R_1C_1} - \frac{1}{R_1C_2}\right] + \frac{1}{R_1C_1C_2}\left(\frac{1}{R_2} + \frac{1}{R_3}\right)}{-\omega^2 + j\omega\left[\frac{1}{R_1C_2} + \frac{1}{R_1C_1} + \left(\frac{1}{R_2} + \frac{1}{R_3}\right)\frac{1}{C_1} - \frac{1}{R_3C_1}\left(1 + \frac{R_4}{R_5}\right)\right] + \frac{1}{R_1C_1C_2}\left(\frac{1}{R_2} + \frac{1}{R_3}\right)}$$

STEFFEN DUAL ALLPASS FILTERS

DUAL ALLPASS FILTER – PHASE RESPONSES

DUAL ALLPASS FILTER – RESPONSE COMPARISON

NORMALIZED PROTOTYPE PARAMETERS

SECOND ORDER PROTOTYPE

BW RATIO	Q	@ 1	()2	PHASE ERROR	
3	0.31011	0.53488	1.87003	0.074°	
4	0.30348	0.52811	1.89315	0.178°	
5	0.29767	0.52381	1.90940	0.308°	
6	0.29206	0.51853	1.92700	0.455°	
8	0.28334	0.50984	1.95934	0.770°	
10	0.27553	0.50292	1.98650	1.080°	
15	0.26010	0.48829	2.04241	1.910°	
20	0.25003	0.47960	2.08534	2.550°	

$$T_{1}(S) = \frac{S^{2} - \frac{\omega_{1}}{Q_{1}}S + \omega_{1}^{2}}{S^{2} + \frac{\omega_{1}}{Q_{1}}S + \omega_{1}^{2}}$$
$$T_{2}(S) = \frac{S^{2} - \frac{\omega_{2}}{Q_{2}}S + \omega_{2}^{2}}{S^{2} + \frac{\omega_{2}}{Q_{2}}S + \omega_{2}^{2}}$$
$$\omega_{0} = \sqrt{\omega_{1}\omega_{2}} = 1$$

16

THIRD ORDER PROTOTYPE

BW RATIO	Q1	<mark>@</mark> 1	γı	Q2	@ 2	γ2	PHASE ERROR
6	0.19231	0.5500	0.7310	0.19206	1.81750	1.3700	0.020°
8	0.18354	0.5458	0.7200	0.18347	1.83064	1.3880	0.040°
10	0.17560	0.5420	0.7110	0.17652	1.84217	1.4100	0.070°

$$T_{1}(S) = \left(\frac{S^{2} - \frac{\omega_{1}}{Q_{1}}S + \omega_{1}^{2}}{S^{2} + \frac{\omega_{1}}{Q_{1}}S + \omega_{1}^{2}}\right) \left(\frac{\gamma_{1} - S}{\gamma_{1} + S}\right) \qquad T_{2}(S) = \left(\frac{S^{2} - \frac{\omega_{2}}{Q_{1}}S + \omega_{2}^{2}}{S^{2} + \frac{\omega_{2}}{Q_{2}}S + \omega_{2}^{2}}\right) \left(\frac{\gamma_{2} - S}{\gamma_{2} + S}\right) \\ \omega_{0} = \sqrt{\omega_{1}\omega_{2}} = 1 \qquad \gamma_{0} = \sqrt{\gamma_{1}\gamma_{2}} = 1$$
K5TRA

ALLPASS FILTER CONSIDERATIONS

- Baseband audio filters
 - Active biquad designs, like Steffen
 - Low Q poles and zeros
- RF filters
 - Passive filters
 - Non-minimum phase transfer cannot be realized as ladder
 - ✓ Lattice networks with baluns
 - ✓ Bridge-T networks
- Allpass filters always have pole-zero symmetry WRT j ω axis
- First order: $T(S) = \left(\frac{\gamma S}{\gamma + S}\right)$
- Second order:

Third order:

$$T(S) = \frac{S^2 - \frac{\omega_0}{Q_0}S + \omega_0^2}{S^2 + \frac{\omega_0}{Q_0}S + \omega_0^2}$$
$$T(S) = \left(\frac{S^2 - \frac{\omega_0}{Q_0}S + \omega_0^2}{S^2 + \frac{\omega_0}{Q_0}S + \omega_0^2}\right) \left(\frac{\gamma - S}{\gamma + S}\right)$$

LATTICE ALLPASS FILTERS

FIRST ORDER

SECOND ORDER

$$L = \frac{R}{\gamma}$$
$$C = \frac{L}{R^2}$$

CASCADE 1st ORDER to 2nd ORDER LATTICE

- For applications here, the pole / zero Q is always < 0.5
- System is over-damped; so, poles and zeros are real and distinct
- Allows: 2nd order lattice equivalence to cascaded 1st order lattices

$$T(S) = A(S)B(S) = \left(\frac{S_a - S}{S_a + S}\right) \left(\frac{S_b - S}{S_b + S}\right)$$

$$T(S) = \frac{S^2 - (S_a + S_b)S + S_a S_b}{S^2 + (S_a + S_b)S + S_a S_b}$$

$$\varpi_o = \sqrt{S_a S_b} \qquad Q = \frac{\sqrt{S_a S_b}}{S_a + S_b} \qquad \frac{\varpi_o}{Q} = S_a + S_b$$

CASCADE 1st ORDER to 2nd ORDER LATTICE

 $L = L_a + L_b \qquad C_1 = C_a + C_b$ $C = \frac{C_a C_b}{C_a + C_b} \qquad L_1 = \frac{L_a L_b}{L_a + L_b}$

ALTERNATE METHOD: CARRIER 90 ° PHASE SPLIT

- Since carrier signal is single frequency, this method is attractive over lattice allpass networks.
- A 2x carrier frequency is needed.
- Flip-flops divide the frequency <u>and</u> phase by 2.
- $180^{\circ}/2 = 90^{\circ}$
- This technique, of course, will not work for a wideband signal, like the audio/baseband.

LOWPASS BASEBAND AUDIO FILTER

• Lowpass active filters have high Q poles

- Cascaded biquad blocks are have higher sensitivity than passive
- Active filters *based on passive designs* have lower sensitivity:
 - Gyrator substitution for inductors
 - Frequency Dependent Negative Resistor (FDNR)

FOURTH ORDER PASSIVE LPF

PASSIVE BASED ACTIVE LPF

C=.032µF

R=3.3KO

_

Ν

Subnet: FDNR 1.5uF

1K, 0.038uF

R=2.2KO

N

Subnet: FDNR 2.2uF

1K, 0.047uF

INVERTING CAPACITOR IMPEDANCE $L_{eqv} = K^2 C$

INDUCTOR EQUIVALENT BY

GYRATORS PROVIDE

FDNR SOLUTION OBTAINED BY Z-SCALING PASSIVE LADDER ELEMENTS BY: K/S

C=0.02µF

LPF RESPONSE

RIORDAN'S GYRATOR – AS INDUCTOR

$$Z_{IN} = \frac{Z_1 Z_3 Z_5}{Z_2 Z_4}$$

$$Z_2 = (C S)^{-1}$$

$$Z_1 = Z_3 = Z_4 = Z_5 = R$$

$$Z_{IN} = SCR^2$$

 $L_{eff} = CR^2$

26

BRUTON'S FDNR

$$Z_{IN} = \frac{Z_1 Z_3 Z_5}{Z_2 Z_2}$$

$$Z_1 = Z_3 = (C_D S)^{-1}$$

$$Z_2 = Z_4 = Z_5 = R_D$$

$$Z_{IN} = \frac{1}{S^2 R_D C_D^2} = \frac{1}{S^2 D}$$

SUMMARY

- SSB (image reject) direct conversion blocks
- Audio band limiting filter is key to setting selectivity
- Phase difference networks are obtained from a pair of allpass delay equalizers
- Audio phase difference networks are realized with Steffen allpass filters
- Wideband RF passive phase difference networks are realized as a pair of 2nd order lattice filters (with balun)
- Active filter sensitivity discussed
- Audio band limiting active filters based on passive ladders are preferred for low sensitivity.